Learning Attractor Landscapes for Learning Motor Primitives
نویسندگان
چکیده
Many control problems take place in continuous state-action spaces, e.g., as in manipulator robotics, where the control objective is often defined as finding a desired trajectory that reaches a particular goal state. While reinforcement learning offers a theoretical framework to learn such control policies from scratch, its applicability to higher dimensional continuous state-action spaces remains rather limited to date. Instead of learning from scratch, in this paper we suggest to learn a desired complex control policy by transforming an existing simple canonical control policy. For this purpose, we represent canonical policies in terms of differential equations with well-defined attractor properties. By nonlinearly transforming the canonical attractor dynamics using techniques from nonparametric regression, almost arbitrary new nonlinear policies can be generated without losing the stability properties of the canonical system. We demonstrate our techniques in the context of learning a set of movement skills for a humanoid robot from demonstrations of a human teacher. Policies are acquired rapidly, and, due to the properties of well formulated differential equations, can be re-used and modified on-line under dynamic changes of the environment. The linear parameterization of nonparametric regression moreover lends itself to recognize and classify previously learned movement skills. Evaluations in simulations and on an actual 30 degree-offreedom humanoid robot exemplify the feasibility and robustness of our approach.
منابع مشابه
Reinforcement Learning for Parameterized Motor Primitives [IJCNN1759]
One of the major challenges in both action generation for robotics and in the understanding of human motor control is to learn the “building blocks of movement generation”, called motor primitives. Motor primitives, as used in this paper, are parameterized control policies such as splines or nonlinear differential equations with desired attractor properties. While a lot of progress has been mad...
متن کاملA dynamical systems interpretation of epigenetic landscapes for infant motor development
This paper presents a unified dynamical systems theory of motor learning and development and addresses the normative order and timing of activities in the infant motor development sequence. The emphasis is on the role of intention in modulating the epigenetic landscapes to the emerging forms of infant motor development and how the evolution of attractor landscape dynamics in infancy arises from...
متن کاملApplying the Episodic Natural Actor-Critic Architecture to Motor Primitive Learning
In this paper, we investigate motor primitive learning with the Natural Actor-Critic approach. The Natural Actor-Critic consists out of actor updates which are achieved using natural stochastic policy gradients while the critic obtains the natural policy gradient by linear regression. We show that this architecture can be used to learn the “building blocks of movement generation”, called motor ...
متن کاملLearning movement sequences with a delayed reward signal in a hierarchical model of motor function
A key problem in reinforcement learning is how an animal is able to learn a sequence of movements when the reward signal only occurs at the end of the sequence. We describe how a hierarchical dynamical model of motor function is able to solve the problem of delayed reward in learning movement sequences using associative (Hebbian) learning. At the lowest level, the motor system encodes simple mo...
متن کاملLearned parametrized dynamic movement primitives with shared synergies for controlling robotic and musculoskeletal systems
A salient feature of human motor skill learning is the ability to exploit similarities across related tasks. In biological motor control, it has been hypothesized that muscle synergies, coherent activations of groups of muscles, allow for exploiting shared knowledge. Recent studies have shown that a rich set of complex motor skills can be generated by a combination of a small number of muscle s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002